翻訳と辞書
Words near each other
・ Longitarsus ventricosus
・ Longitarsus vilis
・ Longitarsus violentoides
・ Longitarsus violentus
・ Longitarsus weisei
・ Longitarsus zangherii
・ Longitergite
・ Longitrichanenteria
・ Longitude
・ Longitude (book)
・ Longitude (TV series)
・ Longitude 131°
・ Longitude Act
・ Longitude by chronometer
・ Longitude LLC
Longitude of the ascending node
・ Longitude of the periapsis
・ Longitude of vernal equinox
・ Longitude Prize 2014
・ Longitude Research
・ Longitude Rewards
・ Longitude rewards
・ Longitudes and Attitudes
・ Longitudinal
・ Longitudinal callosal fascicle
・ Longitudinal data system
・ Longitudinal engine
・ Longitudinal erythronychia
・ Longitudinal fasciculus
・ Longitudinal framing


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Longitude of the ascending node : ウィキペディア英語版
Longitude of the ascending node

The longitude of the ascending node (☊ or Ω) is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a reference direction, called the ''origin of longitude'', to the direction of the ascending node, measured in a reference plane.〔(Parameters Describing Elliptical Orbits ), web page, accessed May 17, 2007.〕 Commonly used reference planes and origins of longitude include:
* For a geocentric orbit, Earth's equatorial plane as the reference plane, and the First Point of Aries as the origin of longitude. In this case, the longitude is also called the right ascension of the ascending node, or RAAN. The angle is measured eastwards (or, as seen from the north, counterclockwise) from the First Point of Aries to the node.〔〔(Keplerian Elements Tutorial ), amsat.org, accessed May 17, 2007.〕
* For a heliocentric orbit, the ecliptic as the reference plane, and the First Point of Aries as the origin of longitude. The angle is measured counterclockwise (as seen from north of the ecliptic) from the First Point of Aries to the node.〔(Orbital Elements and Astronomical Terms ), Robert A. Egler, Dept. of Physics, North Carolina State University. Web page, accessed May 17, 2007.〕
* For an orbit outside the Solar System, the plane through the primary perpendicular to a line through the observer and the primary (called the ''plane of the sky'') as the reference plane, and north, i.e., the perpendicular projection of the direction from the observer to the North Celestial Pole onto the plane of the sky, as the origin of longitude. The angle is measured eastwards (or, as seen by the observer, counterclockwise) from north to the node.〔''The Binary Stars'', R. G. Aitken, New York: Semi-Centennial Publications of the University of California, 1918.〕, pp. 40, 72, 137; 〔(''Celestial Mechanics'' ), Jeremy B. Tatum, on line, accessed May 17, 2007.〕, chap. 17.
In the case of a binary star known only from visual observations, it is not possible to tell which node is ascending and which is descending. In this case the orbital parameter which is recorded is the longitude of the node, Ω, which is the longitude of whichever node has a longitude between 0 and 180 degrees.〔, chap. 17;, p. 72.
==Calculation from state vectors==
In astrodynamics, the longitude of the ascending node can be calculated from the specific relative angular momentum vector ''h'' as follows:
: \mathbf = \mathbf \times \mathbf = (-h_y, h_x, 0)
: \Omega =\arccos }}\ \ (n_y\ge 0);
:\Omega =2\pi - \arccos }}\ \ (n_y<0).
Here, ''n''=<''n''x, ''n''y, ''n''z> is a vector pointing towards the ascending node. The reference plane is assumed to be the ''xy''-plane, and the origin of longitude is taken to be the positive ''x''-axis. ''k'' is the unit vector (0, 0, 1), which is the normal vector to the ''xy'' reference plane.
For non-inclined orbits (with inclination equal to zero), Ω is undefined. For computation it is then, by convention, set equal to zero; that is, the ascending node is placed in the reference direction, which is equivalent to letting ''n'' point towards the positive ''x''-axis.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Longitude of the ascending node」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.